2,004 research outputs found

    The educational scorecard: The Start of our Journey

    Get PDF
    Against a backdrop of public sector cuts, increasing university fees and high youth unemployment, we are facing challenges in Higher Education to demonstrate the value of our courses. Assessing the value of learning, however, is not straight forward. This paper reports on a study of evaluation processes on a post-graduate, professionally accredited diploma delivered at a selection of post 1992 universities. The driver for the study was a concern that current evaluation processes do not fully demonstrate the value of the course nor take into account the needs of multiple stakeholders. The project included benchmarking University evaluation processes and conducting a dialogue with stakeholders. The study adopted a qualitative management research approach, involving: a review of current practice, comparison with a sample of equivalent courses, and consultation (in the form of focus groups and semi-structured interviews) with a sample of students and employers. The paper discusses findings and proposes recommendations for future evaluation procedures in the design of an ‘educational scorecard’ for the course. Kaplan and Norton’s ‘balanced scorecard (1996) concept was adapted to provide a mechanism to represent and balance the needs of different stakeholder groups in the education process. We argue that we cannot truly assess accountability and comparability without engaging a range of stakeholders, not only in soliciting their views on the outcome of the learning but also in the design and implementation of evaluation processes. The ‘educational scorecard’ presented in this paper is developed specifically for the post-graduate diploma in Human Resource Management (PDHRM) at Leeds Metropolitan University and the report concludes with some initial reflections on the benefits of adopting the scorecard methodology The proposed model is flexible and may be adapted for other HE institutions and courses

    Role of hydrogen in hydrogen-induced layer exfoliation of germanium

    Get PDF
    The role of hydrogen in the exfoliation of Ge is studied using cross-sectional transmission electron microscopy, atomic force microscopy, and multiple-internal transmission mode Fourier-transform infrared absorption spectroscopy and compared with the mechanism in silicon. A qualitative model for the physical and chemical action of hydrogen in the exfoliation of these materials is presented, in which H-implantation creates damage states that store hydrogen and create nucleation sites for the formation of micro-cracks. These micro-cracks are chemically stabilized by hydrogen passivation, and upon annealing serve as collection points for molecular hydrogen. Upon further heating, the molecular hydrogen trapped in these cracks exerts pressure on the internal surfaces causing the cracks to extend and coalesce. When this process occurs in the presence of a handle substrate that provides rigidity to the thin film, the coalescence of these cracks leads to cooperative thin film exfoliation. In addition to clarifying the mechanism of H-induced exfoliation of single-crystal thin Ge films, the vibrational study helps to identify the states of hydrogen in heavily damaged Ge. Such information has practical importance for the optimization of H-induced layer transfer as a technological tool for materials integration with these materials systems

    Rate dependent shear bands in a shear transformation zone model of amorphous solids

    Full text link
    We use Shear Transformation Zone (STZ) theory to develop a deformation map for amorphous solids as a function of the imposed shear rate and initial material preparation. The STZ formulation incorporates recent simulation results [Haxton and Liu, PRL 99 195701 (2007)] showing that the steady state effective temperature is rate dependent. The resulting model predicts a wide range of deformation behavior as a function of the initial conditions, including homogeneous deformation, broad shear bands, extremely thin shear bands, and the onset of material failure. In particular, the STZ model predicts homogeneous deformation for shorter quench times and lower strain rates, and inhomogeneous deformation for longer quench times and higher strain rates. The location of the transition between homogeneous and inhomogeneous flow on the deformation map is determined in part by the steady state effective temperature, which is likely material dependent. This model also suggests that material failure occurs due to a runaway feedback between shear heating and the local disorder, and provides an explanation for the thickness of shear bands near the onset of material failure. We find that this model, which resolves dynamics within a sheared material interface, predicts that the stress weakens with strain much more rapidly than a similar model which uses a single state variable to specify internal dynamics on the interface.Comment: 10 pages, 13 figures, corrected typos, added section on rate strengthening vs. rate weakening material

    Spectroscopic studies of the mechanism for hydrogen-induced exfoliation of InP

    Get PDF
    The motion and bonding configurations of hydrogen in InP are studied after proton implantation and subsequent annealing, using Fourier transform infrared (FTIR) spectroscopy. It is demonstrated that, as implanted, hydrogen is distributed predominantly in isolated pointlike configurations with a smaller concentration of extended defects with uncompensated dangling bonds. During annealing, the bonded hydrogen is released from point defects and is recaptured at the peak of the distribution by free internal surfaces in di-hydride configurations. At higher temperatures, immediately preceding exfoliation, rearrangement processes lead to the formation of hydrogen clusters and molecules. Reported results demonstrate that the exfoliation dynamics of hydrogen in InP and Si are markedly different, due to the higher mobility of hydrogen in InP and different implant-defect characteristics, leading to fundamental differences in the chemical mechanism for exfoliation

    Strain localization in a shear transformation zone model for amorphous solids

    Full text link
    We model a sheared disordered solid using the theory of Shear Transformation Zones (STZs). In this mean-field continuum model the density of zones is governed by an effective temperature that approaches a steady state value as energy is dissipated. We compare the STZ model to simulations by Shi, et al.(Phys. Rev. Lett. 98 185505 2007), finding that the model generates solutions that fit the data,exhibit strain localization, and capture important features of the localization process. We show that perturbations to the effective temperature grow due to an instability in the transient dynamics, but unstable systems do not always develop shear bands. Nonlinear energy dissipation processes interact with perturbation growth to determine whether a material exhibits strain localization. By estimating the effects of these interactions, we derive a criterion that determines which materials exhibit shear bands based on the initial conditions alone. We also show that the shear band width is not set by an inherent diffusion length scale but instead by a dynamical scale that depends on the imposed strain rate.Comment: 8 figures, references added, typos correcte

    Design approaches and materials processes for ultrahigh efficiency lattice mismatched multi-junction solar cells

    Get PDF
    In this study, we report synthesis of large area (>2cm^2), crack-free GaAs and GaInP double heterostructures grown in a multi-junction solar cell-like structure by MOCVD. Initial solar cell data are also reported for GaInP top cells. These samples were grown on Ge/Si templates fabricated using wafer bonding and ion implantation induced layer transfer techniques. The double heterostructures exhibit radiative emission with uniform intensity and wavelength in regions not containing interfacial bubble defects. The minority carrier lifetime of ~1ns was estimated from photoluminescence decay measurements in both double heterostructures. We also report on the structural characteristics of heterostructures, determined via atomic force microscopy and transmission electron microscopy, and correlate these characteristics to the spatial variation of the minority carrier lifetime

    p-n junction heterostructure device physics model of a four junction solar cell

    Get PDF
    We present results from a p-n junction device physics model for GaInP/GaAs/GaInAsP/GaInAs four junction solar cells. The model employs subcells whose thicknesses have an upper bound of 5ÎŒm and lower bound of 200nm, which is just above the fully depleted case for the assumed doping of N_A = 1 x 10^(18) cm^(-3) and N_D = 1 x 10^(17) cm^(-3). The physical characteristics of the cell model include: free carrier absorption, temperature and doping effects on carrier mobility, as well as recombination via Shockley-Read-Hall recombination from a single midgap trap level and surface recombination. Upper bounds on cell efficiency set by detailed balance calculations can be approached by letting the parameters approach ideal conditions. However whereas detailed balance calculations always benefit from added subcells, the current matching requirements for series connected p-n multi-junctions indicate a minimum necessary performance from an added subcell to yield a net increase in overall device efficiency. For the four junction cell considered here, optimizing the subcell thickness is an important part of optimizing the efficiency. Series resistance limitations for concentrator applications can be systematically explored for a given set of subcells. The current matching limitation imposed by series connection reduces efficiency relative to independently-connected cells. The overall trend indicates an approximately 5% drop in efficiency for series connected cells relative to identical independently connected cells. The series-connected devices exhibit a high sensitivity to spectral changes and individual subcell performance. If any single subcell within the series-connected device is degraded relative to its optimal design, the entire device is severely hindered. This model allows complex heterostructure solar cell structures to be evaluated by providing device physics-based predictions of performance limitations
    • 

    corecore